GROWTH RATE OF LIQUID DROPS ON A FLAT SURFACE
DURING DROPWISE CONDENSATION OF VAPOR FROM
A VAPOR — GAS MIXTURE
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The growth rate of drops on a flat surface during condensation of a vapor from a vapor —-gas
mixture is determined theoretically and experimentally.

Considerable interest is presently being displayed in studies of the process of heat and mass exchange
during the dropwise condensation of vapor from vapor —gas mixtures onto solid surfaces. However, the
principles of the formation and growth of drops of condensate on cooled surfaces have been insufficiently
studied. The study of the growth rate of liquid drops on a surface has been conducted only with condensation
in a medium of saturated vapor [1], i.e., under conditions when the growth rate of the drops is limited only
by the thermal resistance of the drops of condensate. During vapor condensation from a vapor —gas mixture
with a high concentration of the noncondensing component,the growth rate of the drops is determined by the
diffusion resistance to the transport of vapor to the condensation surface, while the role of thermal resis-
tance is no longer significant in a majority of cases.

Let us consider the dropwise condensation of vapor onto the solid surface of a disk of radius R, whose
temperature is kept constant (T = Ty,) from a half-space (z > 0} filled with a vapor —gas medium having
thermodynamic parameters which are constant in time. (Fig, 1). At an arbitrary time t in a region of the
condensation surface whose transverse size is small compared with the characteristic linear scale of the
surface itself there will exist Nos drops of condensate generally of different sizes (N is the number of
drops per unit area of the surface; 8s is the area of the indicated surface element). It is assumed that
there is a relatively large number of drops in the small element, and therefore a statistical approach is
fully acceptable for the study of the kinetics of their growth.

The drops have the shape of spherical segments corresponding to a contact angle 3, (Fig. 1b). The
volume of the k-th drop is
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(1)

The specific flux of vapor to the surface element is

o Gy b

Fig. 1. Calculating diagram.
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Here P is an arbitrary point of element és.

The distribution over the surface of the specific fluxes j of vapor is found through the solution of the
corresponding diffusion problem, As yet the sizes of the drops are small compared with the characteristic
linear scale L of the cooled surface, and their presence has almost no effect on the field of vapor concen-
trations near the surface. It is also assumed that the Grashof number corresponding to this process, con-

" structed in accordance with the size L, is not very large and one can ignore the effect of free convection
on the diffusion of vapor to the condensation surface,

Since during steady-state diffusion the partial density of the vapor must satisfy the Laplace equation
(V3" = 0 for z > 0), the problem is reduced to the determination of the harmonic function p" in the upper
half-space which satisfies the following boundary conditions at the surface z = 0:

p"=p when R<R, ¢"=p, when R>R,

It is very convenient to solve such a problem in a toroidal coordinate system (a, 8, ¢; see Fig. 1a)
which is introduced with the help of the equations
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Since 90" /8¢ = 0 because of symmetry, the Laplace equation in toroidal coordinates is written in
the form

9 shae ﬁ‘ﬁ)_Lﬁ_ _ she _ap”j (4)
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The eorresponding boundary conditions are
o' —p when §=0; @ —p, when p=mu. (®)

The solution of the problem (4)-(5) is sought_ in the form
p"=9" -+ Vcha + cosp ff(r)sh [T (7 —B)] p—1/24ic (che)dr, (8)
0
where p-y/s+ir{cosh ) is a Legendre function with a comple_zx subscript. The function (6) satisfies Eq. (4)
and the second boundary condition of (5). Using the first boundary condition of (5) we can obtain an integral
equation for the determination of the function £{7):
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Thus,
V2 8p"
f(r)=— ch (st} sh {ztt)

and the distribution of the partial vapor density in the volume 0 < 8 < 7 is described by the equation

L~ T T " ¢ h : -
0" =p7 — 3 2(ch & -+ cos B) Ap g‘ fl%ﬂ":’:;m_(%p_l/g-i‘ir (cha)dt. (7)
e ‘

Since the sizes of the drops of condensate and the distances between neighboring drops are small
compared with the radius R, of the disk, one can determine the specific fluxes j of vapor onto the disk,
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averaged over a region of the surface of the disk whose transverse size is small compared with R, but in
which there are a large number of drops. In the determination of these fluxes one can ignore the discrete
nature of the condensation process due to the presence on the disk of individual "foci® of condensation:

-2
(H 55 fe=0

[the Lamé constant H = R;/(cosh o + cos f)],
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Using the integral representation [2]
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changing the order of integration, and counsidering the value of the integral [3]
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we obtain
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where E (x) is the complete elliptic integral
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we obtain
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‘But because of (3), when 3 =190
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Thus, the latter result can be represented in a form more convenient for calculations:
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to Eq. (9)]: 1) Ao" = 0.048; 2) 0.023;
3) 0.0082.

BDAp” sin® B,

By substituting (1) and (2) into the left side of the latter
equation we can find the total growth rate of drops located at a
distance R from the center of the disk per unit of surface:

4 &
R

k=1

. ) 8DAp" sin®p, E(RIRY) )
nzp’\Ro(l — 08 Bl (2 + cos B,) 1—RYR:

It is assumed that the growth of stationary drops takes
place relatively uniformly, i.e., in a narrow enough ring R,
R + OR the drops have about the same radius ¢ = a(R, t) and
are distributed rather uniformly within the limits of the narrow
ring. Moreover, during some time interval At the growth of
these drops scarcely leads to their merging, while their density
N on the surface-does not vary with time, being only a function
of the distance R[N = N(R)] from the center of the disk. Then in
place of (9) one can write

ERIR)___ (10)

Ag? =
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The dependence of the growth rate of the drops on R /R, and A" = const according to Eq. (9) is presented

in Fig. 2.

Equations (9) and (10) are valid if the conditions adopted in their derivation are satisfied. If in-
dividual drops which slightly affect one another are growing on the surface of the disk and the distances
between them are comparable with the radius of the disk, then the solution of the corresponding problem,
in general, becomes considerably more complicated. However, it is relatively easy to obtain an upper
estimate for the growth rate of drops separated from the boundary of the disk by distances I > a. The
growth rate of a single drop on a disk of infinite radius can be taken as such an estimate.

, If, as in the case of "dense" covering of the surface of the disk by drops, the thermal resistance of
the condensate is neglected in comparison with the diffusion resistance of the supply of vapor to it, then
the determination of the field of partial densities of vapor in the vicinity of a single drop comes down to the
solution of Eq. (2) with the following boundary conditions: ‘

o' =0’ whenp =0, 0p'/Op =0 when p=m, p'=pl when B, a-0.

Toroidal coordinates introduced by equaﬁons analogous to (1), in which the radius R, of the disk is replaced
by the radius a of the drop, however, are used here. The solution of the problem formulated is obtained
similarly to the solution of the preceding problem and has the form

p" =0 —V2(cha :~cos(5Ap"j
' "0

The total flux of vapor to the drop is

The growth rate of such a drop is

{ . chfr(n—B)
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Thus, we obtain an equation which is simultaneously an upper estimate for the variation in the dimen-
sions of a drop of condensate sufficiently distant from the boundary of the disk for all possible modes of
dropwise condensation which proceed without the effective influence of free convection:
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Fig. 3. Schematic diagram of experimental apparatus.
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In all of the above we have neglected the thermal resistance of the drop, assuming that the role of
this resistance in the process under consideration is negligibly small compared with the role of the diffu-
sion resistance of the vapor —gas medium. In order to justify this assumption let us use an obvious upper
estimate for the temperature differential AT in a drop of condensate, It is obvious that the heat flux corre-
sponding to the vapor flux G to the drop is

Q = rG, > ra*AAT /A, (12)

where h = atan (8;/ 2) is the height of the spherical segment corresponding to the drop (Fig. 1b). We will
compare this temperature differential AT with the value Ao" by introducing the dimensionless parameter
£ = ATp,} /Ap", where pr- = 3p"/3T ([p"(T)] is the density of the saturated vapor at the temperature T in
accordance with the Clausius — Clapeyron law). For the comparison we take the case of the minimum diffu-
sion resistance corresponding to the kinetics of the growth of a drop sufficiently distant from the boundary
of the disk, where G is estimated from Eq. (11). In this case we obtain the following estimate from (12):

2Drp’” tgBy/2
e A )

But Drps /A <1 and, consequently, & <1, at least if the boundary angle B, is not too close to the value .
T 0

To test the validity of the equations obtained and the assumptions made in the process, experimental
studies were conducted on the determination of the growth rate of drops of condensate on a disk placed
horizontally. A schematic diagram of the apparatus on which the tests were conducted is presented in Fig, 3.

The apparatus consists of a thermally regulated housing 1 in which the assigned constant temperature
of the medium of humid air (T = Ts) and the vapor concentration corresponding to this temperature (p"
'=p!) were maintained. The housing was thermally regulated by water from the thermostat 2 flowing in the
loop formed by the housing and the outer casing 3.

The air was humidified by the evaporation of distilled water maintained in the constant-temperature
housing at the temperature T = T. The heat needed to evaporate the water was supplied with the electric
heater 4.

The condensation of vapor from the humid air took place on a copper disk 5 cooled by water circula-
ting in a cavity under the disk. Oleic acid, which was spread in a thin layer on the surface of the copper
disk, was used as a water repellant.
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a’w? —T - A viewing window of optical glass 6 was pro-
03 . i vided on top of the constant-temperature housing for
“ f"/( P visual observation and motion-picture photography
’&(x A4 - " of the process of formation and growth of drops of
q2 /x)' P - condensate. A UIM-21 instrumental microscope 8
i 3 T v through which the visual observations and motion-
o 2 x% . ~ picture photography of the condensation process
/ = : . were conducted was mounted at a fixed distance
/Lx—' from the viewing window. The photography was
’ > 3 < = r e confiucted in reflected light. Tx{vo motlon-pmture
projector lamps 7 placed at a fixed angle to the
Fig. 4. Growth ratae of drops of condensate when cooled surface were used for illumination,
" - = v . N
sAgc. 0.023 kg /m* and R /R, = 0.666; 2, m; ¢, The temperatures for the humid air (T,), the

cooled surface (Ty), the evaporating liquid (Ts),
the walls of the thermally regulated housing (T,), and the optical glass (T;) were measured with thermo-
couples and controlled during the experiments.

The microscopic observations and motion-picture photography showed that in the initial stage of the
condensation process the number of liquid drops on the disk is very large, and therefore their intensive
merging with one another takes place owing to capillary forces. The zone of the phase transition moves
away from the surface of the disk in proportion to the increase in the sizes of the liquid drops, and there-
fore the principal share of the vapor condenses on the large drops. Directly at the surface of the disk the
concentration of vapor in the medium is small or insufficient to overcome the energy barrier connected
with the formation of the surface of phase separation. Because of this the formation of new auclei of the
liguid phase around the large drops does not occur as intensively as in the initial stage of the condensation
process. In addition, the smaller drops which form are actively "attracted" by the large drops and merge
with them. One can explain the mechanism of such "attraction™ on the basis of the dependence of the sur-
face tension coefficient ¢ on the temperature. For almost all liquids 8o /8T < 0. Disturbances in the tem-
perature field at the condensation surface are connected, on the one hand, with the uneven supply of vapor
to this surface depending on its geometry and the thermodynamic enviroenment near the disk and, on the
other hand, with the local properties of the diffusion kinetics produced by the presence on the disk of rela-
tively large and almost stationary drops. Each of these drops suppresses the supply of vapor to a certain
neighborhood of the disk adjacent to it, thereby creating around itself a zone of reduced temperature into
which the fine droplets stream, drawn by thermocapillary forces produced at the surface of gas —liquid
phase transition in.the presence on it of a temperature gradient. However, the "attraction" of the small
drops to the larger ones takes place over certain time intervals during which one is able to trace the varia-
tion in the sizes of the most characteristic individual drops with the help of high-speed motion-picture.

The sizes of the drops of condensate were measured directly on the screen during viewing of the
most characteristic motion-picture frames through a motion-picture projector. For this a coordinate grid
was applied to the screen, also making it possible to observe a certain group of drops over a long period
of time. The experimental data obtained on the growth rate of individual drops with different initial sizes
when Ap™ = 0.023 kg /m® and R /R, = 0.666 are presented in Fig. 4.

As seen from the figure, the curves obtained for the growth rate of drops with different initial sizes
have the same angle of inclination to the abscissa, i.e., the growth rate of the drops independent of their
initial sizes, proves to be the same. By shifting the straight line segments 1-5, which approximate the
experimental data, in the direction of the time axis one can also obtain the variation in the size of a drop
when it does not merge with neighboring drops during the entire period of filming (Fig. 4, curve 6). The
growth rate of a separate drop calculated from Eq. (10) is- shown on the same figure with a dashed line.

As seen from Fig. 4, the experimental data obtained are in rather good agreement with the calculated
values.

The number of drops of condensate N = N(R) located on a surface element of the disk was counted
successively on individual frames of the film. As these measurements showed, the number of drops of
condensate on a surface element of the disk remains almost constant during a time At and depends only
on the value R /R, The value of the contact wetting angle g, of the surface of the disk was determined
by the graphic method. For this the dimensions of drop profiles were measured with a microscope. Then
the drop profiles were drawn at an increased scale and the wetting angle 3, between the tangent to the drop
profile at the point of its contact with the solid surface, and the base of the drop was determined,
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For surfaces of a copper disk treated with oleic acid the contact wetting angle was in the range of
By = 30-35°, :

The variation in the growth rate of drops as a function of R /R, was also determined in the studies
conducted. For this the filming of the process of drop growth was conducted at two values of R /R, (0.32
and 0.66). As the data obtained showed, Eq. (9) accounts for the variation in the growth rate of the drops
with R /R, sufficiently correctly. In Fig. 2 the experimental points correspond to the growth rates of drops
of condensate on a disk at the values R /R, = 0.32 and 0.66. Curves 1-3 correspond to the drop growth
rates calculated from Eq. (9).

NOTATION

oy g, PR are the density of vapor, density of saturated vapor at temperature of cooled disk, and density
of saturated vapor at temperature of medium surrounding disk (kg /m?);
7z, R are the coordinates.

LITERATURE CITED

1. I. L. McCormick and E. Baer, Dropwise Condensation on Horizontal Surfaces, University of Illinois
(1962).

2. Ya. S. Uflyand, Integral Transformations in Problems of Elastic Theory [in Russian], Izd. AN SSSR,
Moscow — Leningrad (1963).

3. I. M. Ryzhik and I. S. Gradshtein, Tables of Integrals, Sums, Series, and Derivatives [in Russian],
Fizmatgiz, Moscow — Leningrad {1962).

1459



