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The growth rate of drops on a fiat surface during condensation of a vapor f rom a vapor - g a s  
mixture is determined theoret ical ly and experimentally.  

Considerable interest is presently being displayed in studies of the process of heat and mass exchange 
during the dropwise condensation of vapor from vapor-gas mixtures onto solid surfaces. However, the 

principles of the formation and growth of drops of condensate on cooled surfaces have been insufficiently 
studied. The study of the growth rate of liquid drops on a surface has been conducted only with condensation 
in a medium of saturated vapor [i], i.e., under conditions when the growth rate of the drops is limited only 
by the thermal resistance of the drops of condensate. During vapor condensation from a vapor -gas mixture 
with a high concentration of the noncondensing component,the growth rate of the drops is determined by the 
diffusion resistance to the transport of vapor to the condensation surface, while the role of thermal resis- 
tance is no longer significant in a major i ty  of cases .  

Let us consider  the dropwise condensation of vapor onto the solid surface of a disk of radius R 0 whose 
tempera ture  is kept constant  (T = T w) from a hal f -space  (z > 0) filled with a v a p o r - g a s  medium having 
thermodynamic pa rame te r s  which are constant  in t ime (Fig. 1). At an a rb i t r a ry  time t in a region of the 
condensation surface whose t r ansverse  size is smal l  compared  with the charac te r i s t i c  l inear scale of the 
surface itself there will exist  NSs drops of condensate general ly of different s izes (N is the number of 
drops per  unit a rea  of the surface;  6s is the area  of the indicated surface element). It is assumed that 
there is a relat ively large number  of drops in the small  element,  and therefore  a s tat is t ical  approach is 
fully acceptable for the study of the kinetics of their growth. 

The drops have the shape of spher ical  segments  corresponding to a contact angle /3 o (Fig. lb). The 
volume of the k-th drop is 

~a~ (1 - -  cos 1~o)~ (2 -+ cos ~o) 
.0. k - 3 sin3130 (1) 

The specific flux of vapor to the surface element is 

~ m 

�9 R 

b 

Fig. 1. Calculating diagram. 
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] = p, ~ dg~dt 
I~=1 

(2) 

Here  P is an a r b i t r a r y  point of e lement  6s. 

The dis t r ibut ion ove r  the su r face  of the specif ic  fluxes j of vapor  is found through the solution of the 
co r re spond ing  diffusion p rob lem.  As ye t  the size's of the drops  a r e  smal l  compared  with the cha r ac t e r i s t i c  
l inear  sca le  L of the cooled su r face ,  and their  p r e sence  has  a lmos t  no effect  on the field of vapor  concen-  
t ra t ions  nea r  the sur face .  It  is a lso a s sumed  that the Grasho f  number  cor responding  to this p roce s s ,  con-  
s t ruc ted  in accordance  with the s ize  L, is not ve ry  large and one can ignore the effect  of f ree  convection 
on the diffusion of vapor  to the condensat ion sur face .  

Since dur ing s t eady - s t a t e  diffusion the pa r t i a l  density of the vapor  mus t  sa t is fy  the Laplace equation 
(V2p" = 0 for  z > 0), the p rob lem is reduced to the de te rmina t ion  of the harmonic  function p" in the upper  
h a l f - s p a c e  which sa t i s f i e s  the following boundary conditions at  the su r face  z = 0: 

p " - p ~  when R < R 0 ,  p " = p ~  when R ~ P o .  

It  is ve ry  convenient  to solve such a p rob lem in a toroidal  coordinate  s y s t e m  (a, /3, q0; see Fig. la)  
which is  introduced with the help of the equations 

R -b iz = Ro th a ~- i~ R R0 sh a Ro sin I] , - -  , z = ( 3 )  
2 cha -~ cos ~ ch a -}- cos 

a ( sh~ 
O~ ch ~ § cos~ 

The cor respond ing  boundary conditions a re  

Since Op"/3q0 = 0 because  of s y m m e t r y ,  the Laplace  equation in toroidal  coordina tes  is wr i t ten  in 
the fo rm 

0p") , 0 ( san 8p".) 

0a - = - ~ -  cha-l-cos~ 0~ " 
(4) 

p"=p : ,  when ~ = 0 ;  p " = p ' :  when p = a .  (5) 

The solution of t h e p r o b t e m  (4)-(5) is sought in the fo rm 

p" = p:  q- Vch a § cos 13 I [(T)sh IT ( n -  ~)] P--l/2+ir (cha) dr, (6) 
0 

where  p_l/2+iT(COsha) iS a Legendre  function with a complex  subscr ip t .  The function (6) sa t i s f ies  Eq. (4) 
and the second boundary condition of (5). Using the f i r s t  boundary condition of (5) we can obtain an in tegra l  
equation fo r  the de te rmina t ion  of the function f(T): 

f Ap" 
�9 f(T)sh(~T)p_l/2+i~(cha)dT-- Vch~ -;  t ' 
0 

where  ~o." = p~ -Pw" But 

Thus,  

oo 

1 -- V-2- p_,/2+~,(ch a) ch(~)  
V-ch~ + I 

9 

r(T) = oh(aT) sh (~) 

and the d is t r ibut ion of the pa r t i a l  vapo r  densi ty in the volume 0 < fi < ~ is descr ibed  by the equation 

p " = p "  - -  V'2(ch~z + cos ~)Ap" i ch[~(u--~)] . o . �9 . c - h ~  "~'-'/-+~(cha)dT" 
0 

(7) 

Since ~he s i zes  of the d rops  of condensate  and the d i s tances  between neighboring drops  a re  sma l l  
c o m p a r e d  with the radius  R 0 of the disk,  one can de te rmine  the specif ic  fluxes j of vapor  onto the disk,  
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a v e r a g e d  o v e r  a r eg ion  of the s u r f a c e  of the d i sk  whose  t r a n s v e r s e  s ize  is s m a l l  c o m p a r e d  with R o but in 
which the re  a r e  a l a rge  n u m b e r  of d rops .  In the d e t e r m i n a t i o n  of these  fluxes one can  ignore  the d i s c r e t e  
na tu re  of  the condensa t ion  p r o c e s s  due to the p r e s e n c e  on the d i sk  of individual  " foei"  of condensa t ion :  

(v  op" / 
1 =  H 08 ] ~ o  

[the L a m 6  cons tan t  H = R o/(cosh a + cos/3)], 

( ~176 ~ = a p " l / 2 ( c h = +  1) sh(r~,) 
\ 08 ]~--0 

0 

- -  P-,/e ~i~ (cha)dT. 

Us ing  the i n t eg ra l  r e p r e s e n t a t i o n  [2] 

2 i cos(~s) as 
p-1/2+iT (cha) = -~ -  ]/2(chc~ - -  chs) 

0 

changing the order of integration, and c o n s i d e r i n g  the value of  the i n t e g r a l  [3] 

i ~ cos (~s) d'c _ 1 

, sh(rtr) 4ch ~s/2 ' 
0 

we obtain  
05 

" ; ds 
( 09" ) _-- Ap" ~:2(ch~z + 1)- c h 2 ( s l 2 ) ] / . 2 ( c h a _ c h s ) .  

0 

But 

ch a - -  ch s = 2 (ch ~ a/2  - -  ch2s/2). 

Consequen t ly ,  

chc~/2 

hp"2a 122 (ch a + 1)" t '  

I 

dx 

x ~- I (ch 2 a /2- -  x ~) (x z - -  I) 

Since [3] 

ch~z/2 

1 

dx  
x 2 V'(ch 2 a / 2 - - x  z) (x 2 - -  I) 

E (th a/2) 

ch (~/2) 

w h e r e  E (x) is the comple t e  e l l ipt ic  i n t eg ra l  

2 {  1 x2 12"3 
E ( x ) =  1 - -  2---- C 22-42 2"n! 2n - -  1 

we obta in  

Bu t  b e c a u s e  of (3), when/3 = 0 

= DAp" (ch a + t) E (th cc/2) 

aRo 

= R ~ 2 1 - - - -  th cc _ R 
chcr + 1 R0 ' 2 Ro 

Thus ,  the l a t t e r  r e s u l t  can be r e p r e s e n t e d  in a f o r m  m o r e  conven ien t  fo r  ca l cu la t ions :  

] = 2DAp"E (R/Ro) 

Z~Ro [1 - -  (R/Ro) ~1 
(8) 
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Fig. 2. Dependence of va3 = (d /dr )  
N(R, t) 

a~(R, t) on R/R0 [according 
k = l  

to Eq. (9)]: t )  zX0 ~ = 0.048; 2) 0.023; 
3) 0.0082. 

ACt  3 

By substi[uting (1) and (2) into the left side of the la t ter  
equation we can find the total growth ra te  of d rops  located a t  a 
d is tance  R f rom the cen t e r  of the disk pe r  unit of surface:  

N(R,t) 
d 

- ~  Z a~(R, t) 
k = !  

6Dhp" sin3i~o E ( R/ Ro) 

#~P'Ro(1 - -  cos iBo)3(2 + cos 80) 1-- R*/R~ " 
(9) 

It  is a s sumed  that the growth of s ta t ionary  drops  takes 
place  re la t ive ly  uniformly,  i .e. ,  in a nar row enough ring R, 
R + 6R the drops  have about the s ame  radius  a = a (R, t) and 
a r e  dis t r ibuted r a the r  uniformly within the l imits  of the nar row 
ring. Moreover ,  during some t ime in te rva l  At the growth of 
these drops  Scarcely  leads to the i r  merg ing ,  while the i r  densi ty 
N on the sur face-does  not va ry  with t ime,  being only a function 
of the dis tance R[N = N(R)] f rom the center  of the disk. Then in 
place of (9) one can wr i te  

6Dhp" sin s I~o E(R/Ro) At. (10) 
:~Sp'Ro(1 - -  cosl~o)2 (2 + cosJ~o) ,~ (1 - -  R2/Ro) N (R) 

The dependence of the growth r a t e  of the drops  on R / R  0 and ~ "  = const  according  to Eq. (9) is p resen ted  
in Fig.  2. 

Equations (9) and (10) a r e  valid if the conditions adopted in the i r  der iva t ion  a r e  sat isf ied.  If in -  
dividual  drops  which sl ightly affect  one another  a r e  growing on the Surface of the disk and the d is tances  
between them a re  c o m p a r a b l e  with the radius  of the disk,  then the solution of the cor responding  p rob lem,  
in genera l ,  becomes  cons iderab ly  m o r e  compl ica ted.  However ,  it is re la t ive ly  easy  to obtain an upper  
e s t ima te  for  the growth ra t e  of drops  sepa ra ted  f rom the boundary of the disk by d is tances  l >> a. The 
growth ra te  of a single drop on a disk of infinite radius  can be  taken as such an es t ima te .  

If, as  in the case  of "dense"  cover ing  of the su r face  of the disk by drops ,  the t he rma l  r e s i s t ance  of 
the condensate  is neglected in c o m p a r i s o n  with the diffusion r e s i s t a n c e  of the supply of vapor  to it, then 
the de te rmina t ion  of the field of pa r t i a l  dens i t i es  of vapor  ifi the vicinity of a single drop  comes  down to the 
solution of Eq. (2) with the following boundary conditions: 

p" = p~ ~ h ~  = o, ap"/a[~ = o wh~ ~ = ~, V = p: wh~ ~ - ~  ~, ~ -~ o. 

Toro ida[  coord ina tes  introduced by equations analogous to (1), in which the radius  R 0 of the disk is replaced 
by the radius  a of the drop,  however ,  a r e  used here .  The solution of the p rob lem formula ted  is  obtained 
s i m i l a r l y  to the solution of the p reced ing  p rob lem and has the fo rm 

p" = p2 - V 2  (ch ~ + Co~13 Ap" ~: 
(:t ch ~) 

~ : ch 2 (~T) P -1 /~+~  (ch a)  dT. 

0 

The total  flux of vapor  to the drop is 

The growth ra te  of such a drop is 

0 ; 

: 5 

da 2DAp" Sin s ~0 

L dt . . . .  ~a(1 --cos 13o) 3 (2 + cos ~0)P' 

(11) 

Thus ,  we obtain an equation which is s imul taneous ly  an upper  e s t ima te  for  the var ia t ion  in the d i m e n -  
s ions of a drop  of condensate  suff icient ly d is tant  f rom the boundary of the disk for  al l  poss ib le  modes of 
dropwise  condensat ion which proceed without the effect ive influence of f r ee  convection: 
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Fig. 3. Schematic diagram of experimental apparatus. 

Aa 2 = 4DA9" sin 3 ~0 At. 
~p' (1 - -  cos 15o)"- (2 -~- cos I~o) 

In all of the above we have neglected the thermal resistance of the drop, assuming that the role of 
this resistance in the process under consideration is negligibly small compared with the role of the diffu- 
sion resistance of the vapor -gas medium. In order to justify this assumption let us use an obvious upper 
estimate for the temperature differential AT in a drop of condensate. It is obvious that the heat flux corre- 
sponding to the vapor flux G I to the drop is 

Q = rG~ > ~ a ~ A T / h ,  (12) 

where h = a tan (130 / 2) is the height of the spher ical  sega:nent corresponding to the drop (Fig. lb). We wilt 
compare  this tempera ture  differential AT with the value ~o" by introducing the dimensionless  pa rame te r  

11 ~ TY ~ TT = 
= A T P T /  where PT O p " / 3 T  ([p"(T)] is the density of the saturated vapor at the tempera ture  T in 

accordance  with the Claus[us - C l a p e y r o n  law). Fo r  the compar i son  we take the case of the minimum diffu- 
sion res i s tance  corresponding to the kinetics of the growth of a drop sufficiently distant f rom the boundary 
of the disk, where G[ is est imated from Eq. (11). In this case we obtain the following est imate  from (12): 

2Drp'~ tg ~o/2 
e ~  ~k 

But Drp~?/~, <<1 and, consequently, a <<1, at [east if the boundary angle /30 is not too close to s value ~. 

To test the validity of the equations obtained and the assumptions made in the p rocess ,  experimental  
studies were  conducted on the determinat ion of the growth rate of drops of condensate on a disk placed 
horizontal ly.  A schematic  d iagram of the apparatus on which the tests were conducted is presented in Fig. 3. 

The apparatus consis ts  of a thermally regulated housing 1 in which the assigned constant  temperature  
of the medium of humid a i r  (T = T~) and the vapor concentrat ion corresponding to this tempera ture  (p" 
= p'~) were  maintained. The housing was thermally regulated by water  f rom the thermosta t  2 flowing in the 
loop formed by the housing and the outer casing 3. 

The air  was humidified by the evaporation of distilled water  maintained in the cons tan t - t empera ta re  
housing at the tempera ture  T = T~. The heat needed to evaporate the water  was supplied with the electr ic  
hea te r  4. 

The condensation of vapor f rom the humid a i r  took place on a copper  disk 5 cooled by water  c i r c u l a -  
ting in a cavity under the disk. Oleic acid, which was spread in a thin layer  on the surface  of the copper  
disk, was used as a water  repellant.  

1457 



w I 
x 

0 3 6 ~ 12 15 18 t'fO 

Fig. 4. Growth rate of drops of condensate when 
Ap" = 0 .023 k g / m  ~ and R / R  0 = 0 .666;  a ,  m;  t, 
s e e .  

A viewing window of optical glass 6 was p r o -  
vided on top of the cons tan t - tempera ture  housing for 
visual observat ion and motion-picture  photography 
of the p rocess  of formation and growth of drops of 
condensate. A UIM-21 instrumental  mic roscope  8 
through which the visual observations and mot ion-  
picture photography of the condensation p rocess  
were  conducted was mounted at a fixed distance 
from the viewing window. The photography was 
conducted in reflected light. Two motion-picture  
p ro jec tor  lamps 7 placed at a fixed angle to the 
cooled surface were  used for illumination. 

The  tempera tures  for  the humid a i r  (T2), the 
cooled surface (T1), the evaporat ing liquid (T3), 

the walls  of  the thermal ly  regulated housing (T4), and the optical glass  (T 5) were  measured  with t he rmo-  
couples and controlled during the experiments .  

The mic roscop ic  observat ions  and mot ion-pic ture  photography showed that in the initial stage of the 
condensation p rocess  the number  of liquid drops on the disk is very  large,  and therefore  their  intensive 
merg ing  with one another  takes place owing to capi l lary  forces .  The zone of the phase transit ion moves 
away f rom the surface  of the disk in proport ion to the increase  in the s izes  of the liquid drops,  and the re -  
fore the principal  share  of the vapor  condenses on the large drops.  Direct ly at the surface of the disk the 
concentrat ion of vapor in the medium is smal l  or  insufficient to overcome the energy b a r r i e r  connected 
with the format ion of the surface  of phase separat ion.  Because of this the formation of new nuclei of the 
liquid phase around the large drops does not occur  as intensively as in the initial stage of the condensation 
process .  In addition, the sma l l e r  drops which form are actively ~attracted" by the large drops and merge  
with them. Or~e can explain the mechanism of such ~attraction n on the basis of the dependence of the s u r -  
face tension coefficient a on the temperature .  Fo r  a lmost  all liquids ~ a / a T  < 0. Disturbances in the t em-  
pera ture  field at the condensation surface are  connected, on the one hand, with the uneven supply of vapor 
to this surface depending on its geomet ry  and the thermodynamic environment  near  the disk and, on the 
other  hand, with the local proper t ies  of the diffusion kinetics produced by the presence  on the disk of r e l a -  
tively large and a lmost  s ta t ionary drops.  Each of these drops suppresses  the supply of vapor to a cer ta in  
neighborhood of the disk adjacent to it, thereby crea t ing  around itself  a zone of reduced tempera ture  into 
which the fine droplets  s t r eam,  drawn by thermocapi l la ry  forces  produced at the surface of gas - liquid 
phase transit ion in the presence  on it of a tempera ture  gradient.  However,  the "at t ract ion ~ of the small  
drops to the l a rge r  ones takes place over  cer ta in  time intervals  during which one is able to t race  the va r i a -  
tion in the s izes  of the most  cha rac te r i s t i c  individual drops with the help of high-speed motion-picture.  

The s izes  of the drops of condensate were  measured  direct ly  on the sc reen  during viewing of the 
mos t  cha rac te r i s t i c  mot ion-pic ture  f rames  through a mot ion-pic ture  projector .  For  this a coordinate grid 
was applied to the sc reen ,  also making it possible to observe a cer ta in  group of drops over a long period 
of time. The exper imental  data obtained on the growth rate of individual drops with different initial s izes 
when Ap ~ = 0.023 k g / m  3 and R / R  0 = 0.666 are  p r e sen t ed  in Fig. 4. 

As seen f rom the figure, the curves  obtained for the growth rate of drops with different initial s izes 
have the same angle o f  inclination to the absc i ssa ,  i.e., the growth rate of the drops independent of their 
initial s izes ,  proves to be the same. By shifting the s t ra ight  line segments  1-5, which approximate the 
exper imenta l  data, in the direct ion of the time axis one can also obtain the variat ion in the size of a drop 
when it does not merge  with neighboring drops during the entire period of filming {Fig. 4, curve 6). The 
growth rate of a separate  drop calculated f rom Eq. (10) is SbLoWn on the same figure with a dashed line. 
As seen f rom Fig. 4, the experimental  data obtained are  in r a the r  good agreement  with the calculated 
values. 

The number  of drops of condensate N = N(R) located on a surface element of the disk was counted 
success ive ly  on individual f r ames  of the film. As these measuremen t s  showed, the number of drops of 
condensate on a surface  element of the disk remains  a lmost  constant  during a time At and depends only 
on the value R / R  0. The value of the contact  wetting angle /~0 of the surface  of the disk was determined 
by the graphic method. For  this the dimensions of drop profiles were  measured  with a microscope .  Then 
the drop profi les  were  drawn at an increased scale and the wetting angle fi0 between the tangent to the drop 
profile at the point of its contact  with the solid surface,  and the base of the drop was determined. 
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For  surfaces  of a copper  disk treated with oleic acid the contact  wetting angle was in the range of 
[3 o = 30-35 o. 

The variat ion in the growth rate of drops as a function of R / R  0 was also determined in the studies 
conducted. F o r  this the filming of the p rocess  of drop growth was conducted at two values of R / R 0  (0.32 
and 0.66). As the data obtained showed, Eq. (9) accounts for  the variat ion in the growth rate of the drops 
with l~/1~ 0 sufficiently cor rec t ly .  In Fig. 2 the experimental  points correspond to the growth rates  of drops 
of condensate on a disk at the values R / R  0 = 0.32 and 0.66. Curves 1-3 cor respond to the drop growth 
ra tes  calculated f rom Eq. (9). 

Z, R 

�9 N OTA T I O N  

are  the density of vapor,  density of saturated vapor at tempera ture  of cooled disk, and density 
of saturated vapor  at temperature  of medium surrounding'  disk (kg/m3);  
are  the coordinates.  

i, 

2. 

3. 
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